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Abstract

Autotuning technology has emerged recently as a systematic process for evaluating alter-

native implementations of a computation to select the best-performing solution for a particular

architecture. Specialization optimizes code customized to a particular class of input data set.

In this paper, we demonstrate how compiler-based autotuning that incorporates specialization

for expected data set sizes of key computations can be used to speedup up nek5000, a spec-

tral element code. Nek5000 makes heavy use of what are effectively Basic Linear Algebra

Subroutine (BLAS) calls, but for very small matrices. Through autotuning and specializa-

tion, we can achieve significant performance gains over hand-tuned libraries (e.g., Goto, AT-

LAS and ACML BLAS). Further, performance improves even more significantly using higher-

level compiler optimizations that aggregate multiple BLAS calls. We demonstrate more than

2.3X performance gains on an Opteron over the original manually-tuned implementation, and

speedups of up to 1.21X on the entire application running on 256 nodes of the Cray XT5 jaguar

system at Oak Ridge.

1 Introduction

The complexity and diversity of today’s parallel architectures overly burdens application program-
mers in porting and tuning their code. At the very high end, processor utilization is notoriously
low, and the high cost of wasting these precious resources motivates application programmers to

devote significant time and energy to tuning their codes.
To assist the application programmer in managing this complexity, much research in the last

few years has been devoted to auto-tuning software that employs empirical techniques to evaluate

a set of alternative mappings of computation kernels to an architecture and select the mapping
that obtains the best performance [2, 27, 9, 21, 23]. This paper focuses on a particular role for



autotuning, used in conjunction with specialization for specific classes of known input sizes. The
autotuner can derive highly optimized specialized versions of a computation for known input sizes,

and generate a library of these specialized versions. At run time, the execution environment can
invoke the appropriate specialized version from the library.

In previous work, we have presented results from using compiler-based autotuning for compu-

tational kernels, demonstrating performance sometimes comparable to manually-tuned codes [4, 6,
23]. Extending this approach to tuning scalable applications, we apply this approach to nek5000,
a scalable spectral element code. The execution time of nek5000 is dominated by what are es-

sentially matrix-matrix multiplies of very small, rectangular matrices. These small matrices are
of known sizes, and the size remains the same for different problem sizes and different scales.

Further, while highly-optimized BLAS libraries (native, ATLAS, GOTO, etc.) are available, they
are tuned for large rectangular matrices, and do not achieve as high performance as our generated
library for small matrices, as reported in prior work [22]. Thus, specialization for small matri-

ces is a particularly valuable optimization for nek5000, but autotuning is needed to identify the
best-performing implementation of each problem size and add it to the library. Even further per-

formance gains are possible when higher-level compiler optimization aggregates multiple BLAS
calls; autotuning again identifies the best optimization strategy.

In this paper, we describe the process used to optimize nek5000 for the Opteron processor

that combines autotuning and specialization compiler technology We use CHiLL, a polyhedral
loop transformation framework with a script interface, to describe the space of specialized im-
plementations and automatically generate the code for the optimized library [6, 23, 12]. Using

heuristics to prune the search space of possible implementations, a set of variants generated by
CHiLL are then measured and compared to derive the specialized library of implementations. The

resulting BLAS calls are more than 2.3X faster than the original implementation, and the overall
application performance is improved by 21% on 256 nodes of the Cray XT5 system at Oak Ridge.
This paper makes several contributions:

• Automation of architecture-specific specialization fornek5000 using compiler tools, demon-
strating up to 21% performance improvements over on a production code that was already

manually tuned for a problem size running at scale at 256 nodes (and a 19% improvement at
128 nodes). This process could be repeated to tune nek5000 for similar architectures and
native compilers.

• Demonstration that compiler-based autotuning and specialization can exceed performance
gains from library-based autotuning through the use of higher-level optimization that exploit
application context; that is, how the libraries are invoked and expected data sets.

• An optimization strategy that can generalize for other applications that use matrix-matrix
multiply on irregular-sized matrices for which BLAS libraries do not yield high performance,

or for related small matrix operations targeting high-performance for architectures support-
ing multimedia extensions such as SSE-3.

The remainder of the paper is organized as follows. The next section presents an overview of

nek5000 and its performance characteristics. Section 3 describes the compiler technology used
in the optimization of nek5000. We discuss the experimental results for nek5000 in Section 4,

followed by a discussion of related work and a conclusion.



Figure 1: Turbulence in wire-wrapped subassemblies visualized by axial velocity distributions.

2 Nek5000

Nek5000 is a scalable spectral element code for the simulation of fluid flow, heat transfer, mag-
netohydrodynamics and electromagnetics (the latter in a separate code, NekCEM). The code is

based on the spectral element method (SEM) [18], which is a hybrid of spectral and finite element
methods. Spectral discretizations based on N th-order tensor product polynomial expansions in

Ω̂ := [−1, 1]d, d=2 or 3, provide rapid convergence (high accuracy per gridpoint) at low cost. In
particular, operators that are nominally full with O(N6) nonzeros can be applied in only O(N4)
work with only O(N3) memory accesses. Moreover, the work can be cast as dense matrix-matrix

products. The SEM extends the geometric flexibility of spectral methods in two ways. First, the
SEM employs Lagrangian interpolants based on Gauss or Gauss-Lobatto quadrature points that,
in addition to ensuring stability, provide sufficiently accurate quadrature to allow pointwise eval-

uation of variable-coefficient integrands. Integrands involving Jacobians and metric tensors in
deformed domains are thus evaluated with only N3 storage and work complexity. In addition, the

SEM allows multiple domains (deformable brick elements) to be coupled together in the traditional
manner of finite elements to realize complex domain shapes. A recent example is the wire-wrapped
rod-bundle flow of Figure 1, comprising 560,000 elements of order N = 8 [8].

The core computation in nek5000 calls for repeated function evaluations either for explicit
substeps of the time advance or for iterations in implicit substeps. Within each element, each

evaluation entails matrix-vector products of the form C ⊗ B ⊗ Au. Specifically, we require sums
of the form:

vijk =
N∑

p=1

Aipupjk, vijk =
N∑

p=1

Bjpuipk, vijk =
N∑

p=1

Ckpuijp, i, j, k ∈ {1, ..., N}3

It is clear that the first product can be cast as a matrix-matrix product if uijk is viewed as an array

having N2 columns of length N . Similarly, the last product can be expressed as V = UCT , if v and
u are viewed as N2 × N matrices. The middle sum is expressed as a sequence of small products,
u(:, :, k)BT , k = 1, . . . , N [7]. Because the approximation order of the pressure and velocity

spaces differ by 2, the above sums also appear with permutations in which index ranges may be
replaced by M = N − 2. Thus, nek5000 requires numerous calls to small, dense, matrix-matrix
multiplies of known sizes over a limited range of values.

In this paper, we will use nek5000 as an example to illustrate our autotuning process and
associated tools. We evaluate performance impact of: (1) autotuning and specialization for indi-



Figure 2: Overview of our approach

vidual calls to matrix multiply; and, (2) a higher-level optimization of a set of four calls to matrix
multiply in a loop nest. We investigate the performance of two problems: helix2 which is heli-
cal pipe flow, similar to that found in certain vascular flows, and g6a which is turbulent flow in a

channel that is partially blocked by a cylinder.

3 Compiler Technology: Autotuning and Specialization

In this section, we describe our methodology in applying compiler technology to this autotun-
ing and specialization process. First we describe the optimization strategy to be applied to this

code. We use the CHiLL loop transformation framework to generate all desired transformed codes
specialized for specific matrix sizes. Then we use empirical search to find the best optimization
parameters. Here we apply a set of compiler heuristics to reduce the search space to something

manageable. Finally, we create a library of specialized codes and replace invocations to the original
computation with calls to the library.

To put this approach in context, we have automated much of what is difficult in manually tuning

code – correct code generation, empirical measurements to explore a large set of implementations,
pruning to avoid searching unprofitable implementations – but have relied on user involvement

for some of the steps, particularly describing the transformation strategies to be considered. This
approach can evolve towards increased automation as tool technologies improve, but the interfaces
will also always leave the door open for application developers to have the control over optimiza-

tion when they need it.
The tools described in this section are the middle portion of a further automated autotuning

workflow described elsewere and highlighted in Figure 2 [17, 12]. Code triage identifies com-

putations that have optimization opportunities and performance issues. Code outlining derives a
standalone kernel for the key computations discovered in the triage process, along with the ker-

nel’s input data and parameter values collected during application runs. Once the bottlenecks of
an application are identified and outlined into kernels, the extracted kernels need to be specifically
tuned for the target architecture so that the best possible performance can be achieved (autotuning

and code generation).



3.1 Result of Code Triage for Nek5000

From profiling nek5000 for the helix2 input, we found that a procedure called mxm44 0 takes

around 60% of total execution time. This function is a manually tuned implementation of matrix
multiply, which the application authors have found yields overall good performance over a wide

range of architectures. mxm44 0 takes the same set of arguments as mxm. The loop order is mnk
as shown in Figure 4(a). The main loopnest is unrolled by 4 for each of m and n loop. Thus, if both
m and n are multiples of 4, only this 4 × 4 unrolled loopbody is executed. Otherwise, clean-up

loops are executed to deal with the residue iterations. By checking the value of “matrix size mod

4”, the clean-up loops are also unrolled as much as possible up to 4 times for each of m and n to
reduce the loop overhead further.

We would like to improve on the manual optimizations of mxm44 0 by automatically gener-
ating a library for the matrix sizes used for the helix2 problem. To investigate the frequency of

each array size, we instrumented mxm44 0 so that it shows the number of calls for each matrix
size across all of its invocations. We estimate the computational importance of each matrix size by
multiplying the number of calls with the product of the sizes of the three dimensions, and select

those that comprise the bulk of the calls. As we will show in Section 4, this tuned code will also be
useful for other problems that use the same order for the spectral element method, (e.g., the g6a

input data set), and for similar architectures and compilers.

3.2 Optimization Strategy

Since the key computational kernel of nek5000 is matrix-matrix multiply, why is it not suffi-

cient to just use standard BLAS libraries for the target architecture? This point was the focus of
a previous paper, which compared various hand-tuned BLAS libraries to those generated by our
compiler [22]. For large square matrices, such as, for example, 1024×1024, the ACML (native),

ATLAS, and the GOTO BLAS libraries all perform well, above 70% of peak performance. This is
because they incorporate aggressive memory hierarchy optimizations including code transforma-

tions such as data copy, tiling and prefetching to reduce memory traffic as well as to hide memory
latency. Additional code transformations that can improve instruction-level parallelism (ILP) are
performed to optimize the computation. Several examples in the literature describe this general

approach [2, 27, 5, 10, 29].
However if we look closer at matrices of size 10 or smaller, those same BLAS libraries perform

below 25% of peak performance. Since these matrices fit within even small L1 caches, the focus
of optimization should be on managing registers, exploiting ILP in its various forms, and reducing
loop overhead. For these purposes, we can use loop permutation and aggressive loop unrolling

for all loops in a nest. If performed across outer loops of a loop nest, the latter optimization is
often referred to as unroll-and-jam, indicating that outer loops are unrolled and resulting copies
of inner loops are fused (jammed) together. To the backend compiler, unrolling exposes oppor-

tunities for instruction scheduling, scalar replacement and eliminating redundant computations.
Loop permutation may enable the backend compiler to generate more efficient single-instruction

multiple-data(SIMD) instructions by bringing a loop with unit stride access in memory to the in-
nermost position, as required for utilization of multimedia extension ISAs.

Thus, in our initial set of experiments, we generate code using the combination of loop per-

mutation and unroll-and-jam. In some cases, where the matrices are small, we obtain the best



performance by coming close to fully unrolling all of the three loops in the nest. However, when
applied too aggressively, loop unrolling can generate code that exceeds the instruction cache or

register file capacity. Therefore, we use autotuning to identify the unroll factors that navigate the
tradeoff between increased ILP and exceeding capacity of the instruction cache and registers.

While effective, even better performance can be obtained by aggregating multiple calls to

matrix-matrix multiply and optimizing the code to exploit reuse in registers and cache, as explained
in Section 2. Being compiler-based, our approach can optimize the middle loop that contains mul-
tiple calls to matrix-matrix multiply. To do this, we inline the matrix multiply function into the loop

as shown in Figure 3. Then, the inlined loopnest is used as an input to our autotuning framework.

do iz=1,10
do i=1,10

do j=1,10
do iz=1,10 C(i,j,iz) = 0.0d0

call mxm(A(1,1,iz),10,B,10,C(1,1,iz),10) do l=1,10

enddo C(i,j,iz) = C(i,j,iz) + A(i,l,iz)*B(l,j)
enddo

(a) original enddo
enddo

enddo

(b) inlined

Figure 3: Loop-inlining for higher-level tuning.

3.3 Specialization and Transformation Using CHiLL

One of the key challenges that a programmer faces during the tuning process is to try many dif-
ferent transformation strategies in order to find the best solution. This is an extremely slow and

error prone process. CHiLL provides a script interface to the programmer that can be used to apply
complex loop transformation strategies on a loop nest by composing a series of loop transforma-

tions [4, 6, 23]. The transformations supported include data copying, tiling, index set splitting,
loop permutation, unroll-and-jam, fission, fusion and any unimodular transformation.

CHiLL’s polyhedral framework provides a mathematical treatment of loop iteration spaces and

array accesses. It has unique design features such as treating each statement in a unified itera-
tion space with the same dimensionality and expressing lexicographical order among individual

loops systematically in a polyhedral space. These features plus accompanied algorithms enable
composing high-level loop transformations generating efficient code. Thus CHiLL provides the
programmer an easy-to-use interface to the autotuning process that can express the kinds of man-

ual optimizations that are commonly used by application programmers, generate high-quality code
and facilitate systematic tuning of optimization parameters and selection of code variants.

To use CHiLL for optimizing small matrix multiply computations, consider the code in Fig-

ure 4(a). The matrix multiply code is imperfectly nested since the C array is initialized to zero
before multiplication. To permute the loop in i,k,j order, the programmer only needs to specify



one permute transformation (Figure 4(c)) and CHiLL generates the correct result as shown in Fig-
ure 4(e). Further, the unroll command of CHiLL performs unroll-and-jam if the unrolled loop is an

outer loop and inner loops can be fused together legally. Figure 4(g) shows the result of all three
unroll sizes u1,u2 and u3 set to 2. Such flexibility greatly helps programmers since they can now
focus their effort on how the transformation affects the locality and the performance instead of the

details of generating the correct code.
For the purposes of specialization, we have added to CHiLL the known command, which allows

the programmer to express known loop bounds. Within CHiLL, known adds additional conditions

to the iteration spaces extracted from the original code. These conditions subsequently affect the
quality of the generated code, permitting different specialized versions and determining, for exam-

ple, whether unroll factors evenly divide loop bounds, so that the compiler can avoid generating
cleanup code.

Figure 4(b), (c) and (d) show three sample CHiLL scripts used to generate three different loop

orders in (a) (actual output is similar but with loop upper bounds fixed at 10), (e) and (f), respec-
tively. For brevity, we show the simplest versions where all unroll amounts are 1. Loops are

numbered starting 1 for the outermost loop and increasing as we move inward. In permute,
the loop numbers are used to indicate the loop order after the permutation. The meaning of
unroll(stmt,loop,factor) is to unroll the individual statement stmt (numbered from 0) within

loop by unroll factor factor (shown as unbound variables). The three scripts shown in Figure 4(b),
(c) and (d) are different in the number of unroll commands; this is necessary because the num-
ber of loops are different after loop permutation as shown in (a), (e) and (f) depending on the loop

order given. The above scripts plus additional ones for different loop orders combined with ten
different known statements were used to generate the specialized BLAS library for nek5000.

These CHiLL scripts, as well as the ones for higher-level optimization, are automatically gen-
erated. Given a loop order and an unroll factor for each loop, first, a permute command is
generated with the loop order, and then an unroll command is generated for each loop for state-

ment s1 in Figure 4(a). If all loops in which statement s0 is not enclosed are inside of all loops in
which it is enclosed as in the loop order of 123, no other unroll commands are necessary. Other-

wise, an unroll command should be generated for each loop in which statement s1 is enclosed
but is itself enclosed within the loop in which statement s1 is not enclosed. For example, i and
j-loops are such loops when the loop order is 312, i.e., kij as in Figure 4(d). Since statement s0

is not inside the k-loop but both i and j-loops are within k-loop after loop permutation, separate
unroll commands are generated for statement s0 for each of i and j-loop. This same approach
can be applied to the higher-level loopnest in Figure 3(b). The only difference is that it is a 4-deep

loop nest, and so four loops are considered for both the permute and unroll transformations.

3.4 Autotuning: Pruning the Search Space

With all the transformation scripts ready, the next step is to search for the best optimization pa-
rameters by invoking CHiLL to generate actual code variants and measure their performance on
the target machine. For some of the smaller matrix sizes, the search space is sufficiently small that

exhaustive search is feasible, but for the larger matrices, we must develop heuristics to prune the
search space to complete the experiments. We extract the heuristics from the exhaustive search
results of small matrices, and use them in pruning the space of larger matrices. In this section, we

briefly describe the pruning heuristics we used, with a more detailed presentation in [22].



do 10, i=1,M
do 20, j=1,N

s0: c(i,j) = 0.0d0
do 30, k=1,K

s1: c(i,j) = c(i,j) + a(i,k)*b(k,j)
30 continue
20 continue
10 continue

(a) original.f

permute([1,2,3])
known(M=N=K=10)
unroll(1,1,u1)
unroll(1,2,u2)
unroll(1,3,u3)

(b) loop order i,j,k

permute([2,3,1])
known(M=N=K=10)
unroll(1,1,u1)
unroll(1,2,u2)
unroll(1,3,u3)
unroll(0,3,u3)

(c) loop order j,k,i

permute([3,1,2])
known(M=N=K=10)
unroll(1,1,u1)
unroll(1,2,u2)
unroll(1,3,u3)
unroll(0,2,u2)
unroll(0,3,u3)

(d) loop order k,i,j

do 2, t4 = 1, 10, 1
do 4, t6 = 1, 10, 1

do 2, t2 = 1, 10, 1 c(t4, t6) = 0.0d0
do 4, t6 = 1, 10, 1 4 continue

c(t6, t2) = 0.0d0 2 continue
4 continue do 6, t2 = 1, 10, 1

do 6, t4 = 1, 10, 1 do 8, t4 = 1, 10, 1
do 8, t6 = 1, 10, 1 do 10, t6 = 1, 10, 1

c(t6,t2)=c(t6,t2)+a(t6,t4)*b(t4,t2) c(t4,t6)=c(t4,t6)+a(t4,t2)*b(t2,t6)
8 continue 10 continue
6 continue 8 continue
2 continue 6 continue
(e) After loop permutation in (c) (f) After loop permutation in (d)

do 2, t2 = 1, 9, 2
do 4, t6 = 1, 9, 2

c(t6, t2) = 0.0d0
c(t6, t2+1,) = 0.0d0
c(t6+1, t2) = 0.0d0
c(t6+1, t2+1) = 0.0d0

4 continue
do 6, t4 = 1, 9, 2

do 8, t6 = 1, 9, 2
c(t6, t2) = c(t6, t2) + a(t6, t4) * b(t4, t2)
c(t6, t2+1) = c(t6, t2+1) + a(t6, t4) * b(t4, t2+1)
c(t6, t2) = c(t6, t2) + a(t6, t4+1) * b(t4+1, t2)
c(t6, t2+1) = c(t6, t2+1) + a(t6, t4+1) * b(t4+1, t2+1)
c(t6+1, t2) = c(t6+1, t2) + a(t6+1, t4) * b(t4, t2)
c(t6+1, t2+1) = c(t6+1, t2+1) + a(t6+1, t4) * b(t4, t2+1)
c(t6+1, t2) = c(t6+1, t2) + a(t6+1, t4+1) * b(t4+1, t2)
c(t6+1, t2+1) = c(t6+1, t2+1) + a(t6+1, t4+1) * b(t4+1, t2+1)

8 continue
6 continue
2 continue

(g) A complete example of script in (c) with u1=u2=u3=2

Figure 4: Example of CHiLL scripts and the generated codes.



Heuristic 1: Loop order. Certain loop orders that lead to lower-performance code variants are
pruned from the search.

Heuristic 2: Instruction cache. The total unroll amount for all three loops is limited by a constant
C that is likely to fill the L1 instruction cache.
Heuristic 3: Unit stride on one loop. Related to heuristic 1, the search is restricted to only those

tuples (Um, Uk, Un) where at least one of Um, Uk or Un is 1, to achieve spatial locality within a
SIMD register between instances of an array access from consecutive iterations.
Heuristic 4: Unroll factor divides iteration space evenly. When a loop of iteration count m is

unrolled by a factor of u, the last ‘m mod u’ iterations have to be executed in a clean-up loop that
is not unrolled. While the cost of executing in the clean-up loop is negligible when the iteration

count is large, it is significant when the matrices are small.
For the four-loop loopnest of Figure 3(b), exhaustive search is not possible even for the smallest

input size. We use the last three heuristics, but now for a four-dimensional loop nest.

While we presented specific heuristics tailored to a set of transformation scripts, at a higher
level, the framework we describe can be used for other application-architecture pairs just by re-

placing heuristics and code transformations to reflect the features of the architecture, compiler
and/or the application.

3.5 Building the Library

After each code variant is generated, it is compiled and linked with the driver that measures and
records the performance. The careful measurement process is described in Section 4.

When the evaluation is complete for the generated code variants, the best performing variant

is selected for each matrix size, and these are aggregated into a library. The library includes a
wrapper code that takes the same number of arguments and has the same name as the existing

default implementation to provide the same interface to the rest of nek5000, as in Figure ??. A
specialized code is invoked if one is available that matches the three size parameters; otherwise,
the original manually-tuned version is invoked.

4 Experiments

This section demonstrates the performance impact of optimizing nek5000 using the approach

and set of compiler tools described in the previous two sections. We begin with details of the two
Opteron architectures we used for the set of experiments; the code was tuned for an Opteron Phe-

nom processor, but additional experiments were conducted on a supercomputer of newer Opterons
to demonstrate that performance gains continue when the tuned code is run on similar architectures
and different data sets of similar order. Subsequently, we present specifics on how we generated

the specialized code for helix2, an example input for nek5000 described in Section 2. Finally,
we present the performance results for first the optimized higher-level kernels and then the full
nek5000 codes invoking the specialized libraries.

For the small data set helix2, we measured performance on a 2.5 GHz AMD Opteron Phenom
workstation that has four cores. The machine has separate 64KB L1 instruction and data caches,

an integrated 512 KB L2 cache, 2 MB L3 cache and 4 GB of memory. Since it runs 64-bit Linux
(Ubuntu 8.04-x86 64), all 16 XMM registers are available for use. To allow an access to
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Figure 5: Block diagram describing autotuning tools and experiment.

hardware performance counters, the Linux kernel (version 2.6.25.4) is patched with perfctr

distributed in PAPI version 3.6.0 [3]. CHiLL version 0.1.5 [6] and the Intel compiler version
10.1 [15] are used to transform and compile the code variants. For scaled up performance on 256
nodes, we measured performance on the jaguarpf at Oak Ridge National Laboratory, a Cray

XT5 supercomputer with new six-core Opteron Istanbul processors. The architecture is similar to
Phenom but there are 12 cores per node, each core runs at 2.6 GHz and has 2 GB of memory per

core. The compiler we use is PGI pgcc and pgf90 version 9.0-2, which is the default compiler
on the machine. For these experiments, we used the g6a data set.

Figure 5 shows the block diagram of the experimental flow. Given input matrix sizes for which

specialization is desired, a matrix multiplication kernel (vanilla.f), shown in Figure 4(a) and a
driver (driver.c), are used to measure and collect the performance of code variants. The driver
measures the number of clock cycles using PAPI TOT CYC, and to obtain accurate measurements,

we execute a variant 500 and 10 times per measurement for matrix multiply and higher-level kernel
respectively, collect 100 such measurements and record the minimum of the 100 measurements as

the final performance of the variant. We produce as output a high-performance library of special-
ized matrix multiplication routines. Parameters m, k and n are used in defining matrix sizes as in
C(m, n) = A(m, k) × B(k, n). Code variants are generated in Fortran but the driver is a C func-

tion. To generate aligned SIMD instructions, attribute ((aligned (16))) qualifier is
added to array declarations and the interprocedural optimization feature was used with -fast for

ifort and -O3 -ipo for icc. Currently, all components inside the dotted box of Figure 5 are
automated. Also, automated parallel driver can invoke multiple copies of code variant generator

and evaluator to exploit task parallelism when multiple cores are available.

We optimize nek5000 in the context of the helix2 input data set. We chose the fastest
variant for each matrix size to create a library of ten specialized matrix multiplication routines and
the wrapper routine. A standard question that arises with this work is whether simply using highly-

tuned BLAS libraries for the Opteron would be sufficient to tune nek5000. In fact, the use of
specialization, autotuning and optimizations focused on small matrices yields significant gains over

even the best manually-tuned libraries. A full comparison with other BLAS libraries was the focus
of prior work [22], summarized here for completeness. We compared our generated BLAS codes to
the manually-tuned code that is included with the nek5000 distribution, the native ACML BLAS
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Figure 6: Performance of the tuned higher-level kernel of Figure 3(b).

(version 4.1.0), GOTO BLAS (goto barcelone-r1.26) and ATLAS (version 3.8.2 with architectural
default AMD64K10h64SSE3). The manually-tuned code that is part of nek5000 performs at

roughly 23% of peak across all sizes, which is more than 3X faster than using the native compiler.
By comparison, ACML, GOTO and ATLAS perform slightly better, but still less than 30% of peak

for the smallest matrices. Our automatically-generated codes yield performance that is up to 74%
of peak, a 2.3X improvement over the manually-tuned code.

The remainder of this section presents the performance gains obtained by using the two ver-

sions of our generated library.

4.1 Performance of Higher-Level Kernels

Figure 6 shows the performance of the tuned versions of the higher-level kernels, shown in Fig-

ure 3(b), for three input sizes. Each label in X-axis of the graph represents the four loop bounds
of iz, i, k and j-loops, and Y-axis is the percentage of machine’s peak. The performance shown

in the graph is extremely high as a compiler generated code, reaching as high as 82% of peak on a
Phenom processor. Recall these kernels are the loops with a call to dense matrix multiply. When
the matrix multiply kernels are tuned for these small sizes of (10,8,10), (8,10,8) and (10,10,10),

the performance was shown to be between 57% and 58% of peak [22]. By tuning the outer loop
together with the dense matrix multiply call, we could not only reduce the function call overheads
but also achieve much higher performance.

As a preparation to use the tuned library on a large parallel machine, the binary library was
transferred to jaguarpf at the Oak Ridge National Laboratory to see if the binary library tuned

on a different machine can be used on a large supercomputer based on a similar architecture. The
black bars show the performance of the binary library on jaguarpf. As can be seen from the
graph, the two different machines are comparable in the performance.

4.2 Performance of Nek5000 on Helix2 on Phenom Workstation

For this experiment, we used the time tool in Linux to measure the wall clock time. We ran the

whole program 10 times for 50 time steps and took the median run time as the measurement for
each of the baseline that uses mxm44 0, MXM that uses the tuned library of matrix multiplies and
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Figure 7: Speedups of the library generated by our approach

TUNE that uses the specialized library of both matrix multiplies and higher-level kernels. The bar

chart in Figure 7(a) show the result of this experiment. When the tuned library of matrix multiplies
is used, the run time drops significantly from the baseline of 207 seconds to 157 seconds achieving
a 31% speedup. When the higher-level kernel is used in addition, the execution time drops even

further to 151, achieving an additional 3% speedup. Overall, this is a speedup of 1.36X over the
baseline.

4.3 Performance of Nek5000 on G6a on Jaguar Supercomputer

We next wanted to evaluate whether this significant performance gain for a single core would
continue as we scaled up the computation to larger configurations and scaled-up problem sizes

running on the jaguarpf supercomputer. We perform these experiments with a different input
data set g6a, one designed to run on 32 to 256 cores, and compare the performance of the original
nek5000 with the two versions that uses the specialized libraries, one with matrix multiplies and

the other with higher-level kernels in addition to matrix multiply kernels. The g6a input was run
for 1000 time steps, and we use the median execution time for each version of the code across five

runs and for 32 to 256 nodes in a single-core mode, i.e., a process per 12-core node.
The speedup curve in Figure 7(b) show that performance gains are achieved with autotuning

and specialization even at this larger scale, and for a different input data set and target platform

than for which the code was tuned. The performance gains are significant, ranging from 17% on
32 nodes up to 21% on 256 nodes.

5 Related Work

Much prior work has been documented on automatically tuning systems. PHiPAC and ATLAS

tune matrix multiplication code automatically for many target machines [2, 27]. Both ATLAS and
PHiPAC use heuristics in guiding the tuning process to reduce the search time. FFTW is a self-
tuning high performance library for discrete Fourier transform. The best factorization of the input

size N is selected by dynamic programming based on empirical performance data [9]. SPIRAL is a
high-performance code generation system for digital signal processing transforms [21]. Recently,



they show how to automatically generate high-performance code from a domain specific language
for the domain of linear transforms [25]. OSKI combines install-time evaluations with run-time

models to tune sparse-matrix vector multiplication and other solvers such as triangular solver [26].
Compiler assisted autotuning and tools facilitating code transformations have also been ex-

tensively studied. Chen et. al. combine compiler models and heuristics with guided empirical

evaluations to take advantage of their complementary strengths [5]. Tiwari et. al. combine Active
Harmony and CHiLL to generate and evaluate code variants. They use a search strategy simi-
lar to the Nelder-Mead algorithm [23]. Hartono et. al. used annotations in the code to describe

performance improving transformations for C programs [13]. POET is a scripting language for
parameterizing complex code transformations [28], which can be used in an autotuning process as

well. Pouchet et. al. embedded legality of affine transformations as linear constraints in polyhedral
space, thereby combining the code transformation steps and the legality checking step [19, 20].
Kulkani et. al. described a tool called VISTA which allowed the users to interactively select the

order and scope of optimization phases in compiler [16].
Herrero and Navarro described specializing matrix multiplication for small matrices [14]. How-

ever, their code variants were generated manually. For tuning nek5000, the most closely related
is Paul Fischer et. al. ’s work on scaling nek5000 on Bluegene [8] and ASCI Red [24]. Our
approach is to improve the single node performance of nek5000 based on compiler technology.

Gunnels et. al. provide insights and strategies for blocking matrices for matrix multiplication at
each level of hierarchical memories [11]. However this does not apply to the small matrices we
encounter in nek5000. Barthou et. al. reduce the search space by separating optimizations for

in-cache computation kernels from those for memory hierarchy [1]. Similar to our approach, they
obtain high performance kernels from the vendor compiler by providing it with simplified kernels.

To generate code variants, they use X Language that is controlled by user provided pragmas. In
our earlier work, we described a compiler-based technique that combines specialization with auto-
tuning for matrix multiply of small, rectangular matrices [22]. In this paper, we demonstrate that

the same auto-tuning strategy can be used to tune higher-level kernels that are application specific.
Further, the strategy is now automated in an auto-tuning system that can exploit multiple cores

in a system. In addition, we experimentally verified that this auto-tuning strategy enables high
speedups even on a large supercomputer system.

6 Conclusion

This paper described an autotuning and specialization methodology applied to nek5000. The
tuning process involves identifying data set sizes for the core computation (matrix multiply of

small matrices), and providing a set of parameterized optimization scripts to the CHiLL polyhedral
framework that generate specialized code. A set of heuristics prune the space of parameter values
and variants as part of autotuning the implementation. We show speedups of up to 2.3X on the

core computation as compared to already manually tuned code, and also much better performance
than standard BLAS libraries. Performance improvements for the full nek5000 application are

36% on one node, and up to 21% on 256 nodes. These results are significant, as they demonstrate

speedup due to compiler optimizations running at scale on a supercomputer for a code that was

already manually tuned.

Beyond tuning nek5000, this paper shows an approach to tuning code that is repeatable,



and permits the application to maintain high-level, architecture-independent code. We can view
the CHiLL script, search-space pruning heuristics and generated library as documentation of the

tuning process for a particular platform and native compiler. Over time, as this code is tuned
for multiple architectures, this prior tuning work can potentially be reused, thus systematically
evolving application code for new architectures from machine-independent code.
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